PRE-TRAINED NETWORK BASED DEEP NETWORK MODEL FOR CLASSIFICATION OF LEAF DISEASES

نویسندگان

چکیده

Bitkiye zarar veren hastalıkların erken teşhisi, kimyasal tarım ilaçlarının tüketimini azaltmak, mali olarak tasarruf etmek ve çevreye verilen kirliliği engelleyebilmek için oldukça önemlidir. Elma ağaç yapraklarında oluşan herhangi bir hastalık durumunda, belirtilerini aşamada tespit edebilmek çiftçiler uzman personelinden destek almak zorunda kalmaktadır. Bu durum çiftçilere büyük maliyet oluşturmaktadır. Bahsedilen problemi çözebilmek adına scab, rust her ikisinin arada kullanılabileceği çoklu gruplarını sınıflandırabilmek Konvolüsyonel Sinir Ağı (CNN) yöntemi tabanlı derin öğrenme modeli geliştirilmiştir. Önerilen yaklaşım popüler transfer öğrenim teknikleri olen DenseNet201, MobileNetV2, ResNet50V2, ResNet101V2, ResNet152V2 algoritmalarını giriş katmanı kullanan CNN katmanlarının birleşiminden oluşmaktadır. Geliştirilen yöntem farklı seviyelerde aydınlatma, gürültü, arka planı homojen olmama durumlarını içeren zorluk seviyesi yüksek veri seti üzerinde test edilmiştir. Test işlemlerinde önerilen yöntemle sınıflandırma doğruluk oranı %97 değerine ulaşılmıştır.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TimeNet: Pre-trained deep recurrent neural network for time series classification

In the spirit of the tremendous success of deep Convolutional Neural Networks as generic feature extractors from images, we propose Timenet : a multilayered recurrent neural network (RNN) trained in an unsupervised manner to extract features from time series. Fixed-dimensional vector representations or embeddings of variable-length sentences have been shown to be useful for a variety of documen...

متن کامل

A Deep Learning-based Approach for Banana Leaf Diseases Classification

Plant diseases are important factors as they result in serious reduction in quality and quantity of agriculture products. Therefore, early detection and diagnosis of these diseases are important. To this end, we propose a deep learning-based approach that automates the process of classifying banana leaves diseases. In particular, we make use of the LeNet architecture as a convolutional neural n...

متن کامل

An Image Processing and Neural Network Based Approach for Detection and Classification of Plant Leaf Diseases

In the present paper we propose and evaluate a framework for detection and classification of plant leaf/stem diseases using image processing and neural network technique. The images of plant leaves affected by four types of diseases namely early blight, late blight, powdery-mildew and septoria has been considered for study and evaluation of feasibility of the proposed method. The color transfor...

متن کامل

Determining the effective features in classification of heart sounds using trained intelligent network and genetic algorithm

Heart diseases are among the most important causes of mortality in the world, especially in industrial countries. Using heart sounds and the features extracted from them are among the non-aggressive diagnosis and prognosis methods for heart diseases. In this study, the time-scale, Cepstral, frequency, temporal and turbulence features are saved and extracted from the heart sounds, and then they ...

متن کامل

Pre-trained Deep Neural Network using Sparse Autoencoders and Scattering Wavelet Transform for Musical Genre Recognition

This paper tries to combine the approach of Deep Neural Networks (DNN) with the novel audio features extracted using the Scattering Wavelet Transform (SWT) for classifying musical genres. The SWT uses a sequence of Wavelet Transforms to compute the modulation spectrum coefficients of multiple orders which was already shown to be promising for this task. The DNN in this work uses layers pre-trai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ad?yaman Üniversitesi mühendislik bilimleri dergisi

سال: 2021

ISSN: ['2149-0309']

DOI: https://doi.org/10.54365/adyumbd.988049